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SUMMARY

The International Fuel Cell Corporation (IFC) state-of-the-art (SOA) 0 2 electrode (Au-10%Pt

electrocatalyst by weight) is currently being used in the alkaline H2-O 2 fuel cell in the NASA Space

Shuttle. Recently, IFC has developed an improved 0 2 electrode, designated as the IFC modified 0 2

electrode, as a possible replacement for the SOA electrode.

In the present study, 0 2 reduction data were obtained for the modified electrode at temperatures be-
tween 23.3 and 91.7 °C. BET measurements gave an electrode BET surface area of about 2070 cm2/cm 2

of geometric surface area. The Tafel data could be fitted to two straight line regions. The slope for the
lower region, designated as the 0.04 V/decade region, was temperature dependent, and the transfer coef-

ficient was about 1.5. The "apparent _ energy of activation for this region was about 19 kcal/mol. An 0 2
reduction mechanism for this 0.04 region is presented. In the upper region, designated as the 0.08 V/

decade region, diffusion may be the controlling process. Tafel data are presented to illustrate the increase

in performance with increasing temperature.

INTRODUCTION

Efficient electrical power systems are major requirements for space applications. For example, the

International Fuel Cells Corporation (IFC) alkaline H2-O 2 fuel cell is used as a primary energy source
aboard the NASA Space Transportation System (Space Shuttle). Although the energy density of the

H2-O 2 fuel cell system is attractive, its voltage efficiency is less than 100 percent, primarily because of

the slower kinetics of the 0 2 electrode.

Initially, IFC used Pt as the electrocatalyst for the 02 electrode, but the fuel cell performance decayed

with time because of the gradual dissolution of Pt. Subsequently, IFC developed a more stable 02 electrode

by using high-surface-area Au-10%Pt (wt%) alloy powder as the electrocatalyst. This state-of-the-art (SOA)

electrode is currently being used in the fuel cell on the NASA Space Shuttle. Performance and stability data

have been reported for this electrode (refs. 1 and 2); Tafel slopes were 0.045 to 0.051 V/decade in 35-percent

KOH (1 atm 02) at 70 °C. Endurance tests at 0.215 A/cm_and 60 °C for a six-cell stack indicated that

the 0 2 electrodes were stable, with a potential decay of less than 2 #V/hr during a cyclic test of over
18 000 hr (ref. 3). Another study, in which a floating electrode half-cell apparatus was used, reported
Tafel slopes of about 0.04 and 0.12 V/decade at moderate current densities for the SOA electrode (ref. 4).

Recently, IFC has developed an improved 0 2 electrode, designated the modified 0 2 electrode, that
uses similar fine-particle Au-10%Pt as the electrocatalyst. Since IFC's preliminary results indicate

improved performance, the modified electrode is being considered as a possible replacement for the SOA

electrode in the NASA Space Shuttle fuel cell. This fuel cell operates at temperatures of about 60 °C;



however,for increasedefficiency, it may be desirable to operate these fuel cells at temperatures above
60 °C.

The present work involved a preliminary study of the IFC modified electrode in a floating electrode

half-cell apparatus over a temperature range of about 65 °C. The 02 reduction performance data
obtained between 23.3 and 91.7 °C showed that electrode performance increased with temperature. A

mechanism for the 02 reduction is presented herein.

EXPERIMENT

Electrode Fabrication

A sample of the IFC modified 02 electrode was obtained from IFC. Although IFC considers the
details of the electrode's fabrication and structure to be proprietary, some information was available.

The surface area of the Au-10%Pt alloy powder was about 15 m2/g. IFC had mixed the powder with a
polytetrafluoroethylene (PTFE) suspension and pressed the mixture onto a grated thin foil Au current

collector equivalent to a 100-mesh screen. The resulting Ugreen" electrode was dried and sintered into_
network to produce a PTFE-bonded electrode. IFC optimized this electrode with the desired hydrophillc-

hydrophobic character to maximize 0 2 gas diffusion to the catalyst-electrolyte interface while minimizing
electrode flooding.

Surface Area and Capacitance

A Beta Scientific Automatic Surface Analyzer (Model 4200) was used to measure the BET surface
area at 2070 cm2/cm 2 of geometric area.

A sample of the electrode was submerged in the KOH electrolyte at 24 °C under an inert atmosphere

of N 2. Capacitances of the Au-10°_Pt powder in the modified electrode were estimated from cyclic sweeps

(in the absence of O2) at potentials where currents resulting from kinetic processes were small. A cyclic
voltammogram was obtained at 5 mV/sec between -0.01 and 1.38 V (see fig. 1). 1 Kinetic processes

appear to be minimal at about 0.1 V. Therefore, the electrode was scanned between 0.05 and 0.15 V at

1 mV/sec; this voltammogram is shown in figure 2. The capacitance can be calculated as follows:

c = 0.5(iA+ ic)/S (1)

where iA and iC represent the anodic and cathodic currents, respectively, expressed in mA; and S
represents the scan rate in mV/sec. For example, anodic and cathodic currents of 0.079 and -0.333 mA
were obtMned at the intermediate potential of 0.10 V, giving a capcitance of about 0.13 farads/cm 2 of

geometric area. If the double layer capacitance is assumed to be 100/_farads/cm 2 of electrochemical sur-

face, about 60 percent of the BET area is being utilized.

1All potentials in the present study will refer to the reversible H 2 potential (RHE) unless otherwise
stated.



ExperimentalApparatus

A floating electrodehalf-cell apparatus (see fig. 3) was used for the electrochemical studies (ref. 5). A

coil of Au wire served as the counter electrode. An atmosphere of gaseous 0 2 (or N2) was passed into the

half-cell apparatus through a presaturator cell that contained KOH at the same temperature and concen-
tration as the half-cell. This minimized changes in KOH concentration due to loss of H20.

Galvanostatic current-potential measurements have been obtained manually and by means of a

computer-driven system. Both methods gave virtually the same results. For the computer-driven
system, the potentiostat (EG&G Princeton Applied Research Model 173) was interfaced with an Apple

IIe computer by means of an EG&G Model 276 plug-in unit. A computer program (EG&G Electro-

chemistry Program, Vol. I) was used to drive and control the potentiostat. For the manual runs, an

EG&G Model 376 plug-in unit was used with the potentiostat.

The iR polarizations were determined by means of an Electrosynthesis Corporation IR instrument (Model

800) in conjunction with a 7-V Zener diode. This instrument periodically interrupted the current for an
interval of a few microseconds, and the diode limited the voltage rise to 7 V during the interruption.

Experimental Procedure

A Hg/HgO electrode served as the reference electrode. Its potential at 25 °C was 0.926 V. The tem-

perature coefficient for this Hg/HgO electrode (see fig. 4) was about -0.45 mV/°C, as determined by

comparing its potentials at various temperatures with those of a dynamic H 2 electrode.

A sample of the modified electrode (1.60 cm 2 of geometric area) was introduced into the half-cell

apparatus as the working electrode, with its catalyst side contacting the 30-percent KOH electrolyte sur-
face. The electrode was raised slightly to form a small meniscus at the electrode-electrolyte interface.

Exact positioning of the electrode is not critical for determining JR-corrected potentials. Although the

potential and iR value may vary slightly with electrode positioning, the corresponding iR-corrected

potential for a galvanostatic run remains virtually constant for a small meniscus height.

PTFE-bonded electrodes often require cathodic preconditioning to minimize polarization. Initially,

the electrode was held cathodically at about -0.9 A for about 1 hr. Then, prior to each series of runs, the

electrode was held at about -0.9 A for periods of about 0.25 to 1.5 hr.

Most galvanostatic runs were made without stirring, since no appreciable changes in potential were

observed with different stirring rates at the currents used. At currents above 1 mA, steady-state con-

ditions were usually obtained after only a few seconds. Once a steady-state condition was obtained, the

potential remained virtually constant with time.

The iR corrections were obtained by plotting iR potentials as a function of current. See figure 5 for a

typical run.
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RESULTS AND DISCUSSION

0 2 ElectrodePerformance

0 2 reduction data were obtained between 23.3 and 91.7 °C for the IFC modified O2 electrode.
Polarization potentials for each run were determined by subtracting the steady-state potentials (JR-

corrected) from the corresponding reversible 0 2 electrode potentials (e.g., 1.229 V at 25 °C). Tafel plots
were obtained by plotting polarization potentials as a function of the logarithms of the respective geo-
metric current densities.

The data for each temperature run could be fitted to two straight line regions. This is illustrated by

the solid lines in figures 6 and 7, which are for electrode A at 24.0 °C and electrode B at 77.8 °C,
respectively. As shown in figure 6, at 24.0 °C the lower region (0.0002 to 0.16 A/cm 2) could be fitted

with a slope of 0.0395 V/decade. This lower region is designated as the 0.04 V/decade region.

For comparison, the data reported in reference 4 for the IFC SOA O 2 electrode (obtained by using the

floating electrode half-cell apparatus) is represented in figure 6 by a dashed line. The data for both
electrodes were in reasonable agreement in this 0.04 region at current densities below about 0.07 A/cm 2.

However, the improved electrode structure of the modified electrode is indicated by the extension of the

0.04 region to larger current densities. Note that although the upper region for the IFC SOA electrode
begins at about 0.07 A/cm 2, the corresponding upper region for the modified electrode begins at about

0.16 A/cm 2.

The resulting slopes and intercepts (i.e., polarization potentials at 1 A/cm 2) in the 0.04 region for the

modified electrode are listed in table I. The values of the slopes in this region increase with increasing

temperature. This is illustrated in figure 8 where the values of the slopes are plotted as a function of

temperature. The data for the modified electrode are represented in figure 8 by circles, and the best fit

by the solid line. The temperature dependence for the 0.04 region was in agreement with the Tafel

expresslon:

b = 2.3RT/aF

where b

faraday.

(2)

representsthe slopeinV/decade_ a representsthe transfercoefficient,and F representsthe
A value ofabout 1.48was calculatedfor the transfercoefficient.

For the modified electrode, not only the value of the slope increased with temperature, but also the

limit for the upper current density in the 0.04 region increased with temperature. For example, the upper

limit at 24.0 °C was about 0.16 A/cm 2, but the corresponding limit at 91.7 °C was about 0.3 A/cm 2.

For comparison, the values of the slopes reported in reference 4 for the IFC SOA O 2 electrode are shown
as squares in figure 8. These values are in reasonable agreement with the values obtained for the IFC

modified 0 2 electrode.

The geometric exchange current densities for the 0.04 region were calculated for the modified electrode

by extrapolating to zero polarization. The results are listed in table II. These values increase with tem-

perature, suggesting that the 0 2 reduction process at the Au-10%Pt surface is thermally activated. In
figure 9, the logarithms of the geometric exchange current densities are plotted as a function of the recip-
rocals of the absolute temperature. The data for the modified electrode are represented by circles, and

the best fit by the solid line. The "apparent" energy of activation for such a reaction may be estimated

by means of the following expression:
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Ea = -2.3R[dlog io/dlog (l/T)]

where Ea is the "apparent _ energy of activation in cal/mol and io is the geometric exchange current
density (ref. 6). A slope of about -4118 K"1 is obtained with a value of about 19 kcal/mol for the

gapparent" energy of activation.

(3)

Values for the SOA electrode are represented in figure 9 by the squares; they show reasonable agree-
ment with the best fit for the modified electrode. Since the Tafel slope values for both the SOA and the

modified electrodes are similar in the 0.4 region (fig. 8), we believe that in this region similar kinetic pro-

cesses are controlling the reduction of 0 2 at the electrocatalyst surfaces of both electrodes.

A shorter straight line region with a larger slope was obtained for the modified 0 2 electrode at higher

currents (figs. 6 and 7). This region, designated in the present study as the 0.08 V/decade region, is illus-
trated in figure 6; here, at 24.0 °C the data between 0.18 and 0.40 A/cm 2 can be fitted with a straight

line with a slope of about 0.084 V/decade. The data in figure 6 show that in the 0.04 region the modified

electrode extends to larger current densities because of its improved electrode structure. The modified

electrode, therefore, may be used at larger current densities than the SOA electrode before polarization

losses become excessive.

For increased efficiency, it may be desirable to operate the IFC H2-O 2 fuel cell at temperatures

greater than 60 °C. As suggested by the polarization data, electrode performance increases with

increasing temperature. This is illustrated in figure 10 where potentials (JR-corrected) for modified

electrode A are plotted as a function of current at 66.1 and 90.3 °C. Furthermore, increasing the tem-

perature to greater than 60 °C for a H2-O 2 fuel cell system should be beneficial for minimizing iR polari-

zation since the conductivity of 30-percent KOH increases with temperature.

O 2 Reduction Mechanisms

A combination of mechanisms proposed in the literature is presented herein for 0 2 reduction at the
Au-10%Pt surface of the IFC modified electrode. In the following reactions, subscripts B and S

represent, respectively, species that are in bulk and that are weakly adsorbed at the surface:

o2,B __,o2, s (a)
O2, s + e" -__ O2",S (b)

O2" s + H20 + e- _ O2H',s + OH" (c)

O2H',s + H20 + 2e" --_ 3OH" (d)

202H- S _ O2, s + 2OH" (e)

O2H',s -4 O2H',B (f)

The initial step for 0 2 reduction at higher currents was reported to involve the formation of an 0 2"
species, as represented in reactions (a) and (b), with a Tafel slope of about 0.12 V/decade (ref. 7). A

Tafel slope of about 0.04 V/decade was reported in a second study (ref. 8), which suggested that the rate-

controlling step for this region involves the production of O2H" from an intermediate in a manner similar

to reaction (c).

Electrochemical reduction of O2H" to produce OH" probably is influenced strongly by the crystal
orientation of the Au surface. For example, O2H" is reported to be electrochemically reduced at Au(100)
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to produce OH" with a four-electron process (ref. 9); however, O2H" is not electrochemically reduced at

moderate potentials at the (110) or (111) orientations (ref. 10). A more detailed reaction scheme for

determining the kinetic parameters for 0 2 reduction at single-crystal Au, primarily involving reactions

(d) to (f), was also reported (ref. 11). Even though 0 2 is not significantly electrochemically reduced at

the (110) and (111) orientations, recycling of O2 at these orientations may result in an apparent electron

transfer of greater than two. Some of the O2H" produced in reaction (c) may subsequently decompose

catalytically (reaction (e)) to produce OH" and 0 2. Recycling of this 0 2 (in reaction (b)) produces

additional O2H'.

A definitive determination of the Au orientation in the IFC modified electrode cannot be made at

present. However, we assume that the amount of Au(100) in this electrode is small or insignificant since

Au(lll) is the more stable orientation, as indicated by the formation of Au(lll) after vapor deposition

(ref. 12). The Au(ll0) and (111) orientations, therefore, may lead to an overall electron path ranging

between two and four, depending on the extent of O2H" decomposition prior to its diffusion into the bulk.

In this study of the modified electrode, reaction (c) is suggested as the rate-controlling step for the

0.04 V/decade region. The values obtained for the slopes in this region are in agreement with a predicted

value of about 0.0394 V/decade for a Tafel process at 25 °C involving two consecutive one-electron
transfer steps with a transfer coefficient of about 1.5 (ref. 13).

A doubling of the 0.04 value for the slope to about 0.08 V/decade was observed for the modified

electrode at larger currents. It has been reported that a doubling of the slope for 0 2 reduction at PTFE-

bonded diffusion electrodes may involve a change from activation control to diffusion control (ref. 14).

Thus, we believe that the 0.08 region observed for the IFC modified electrode represents a diffusion-

controlled process.

CONCLUDING REMARKS

The IFC 0 2 electrode used in the NASA Space Shuttle alkaline H2-O 2 fuel cell is the SOA electrode

to which 0 2 electrodes can be compared for electrocatalytic 0 2 reduction activity. An improved
electrode, designated the modified O 2 electrode, has been developed by IFC as a possible replacement for
the SOA electrode. In the present study, preliminary data were obtained for the IFC modified electrode

by using a floating electrode half-cell apparatus. A comparison of these data with similar type data

reported for the IFC $OA electrode (ref. 4) indicated that the kinetic processes were similar at smaller

currents, with a Tafel slope of about 0.04 V/decade for both electrodes. The improved electrode
structure of the modified electrode, however, extended the 0.04 kinetic region to larger current densities

before the 0.08 region became rate controlling. Polarization data indicated that electrode performance

increased with increasing temperature.

ACKNOWLEDGMENT

We would like to acknowledge International Fuel Cells Corporation and R. E. Martin for a sample of
the IFC modified electrode.



REFERENCES

1. M.S. Freed and R.J. Lawrence, "Development of Gold Alloy Catalyst Cathode for Alkaline Electro-

lyte Fuel Cells." Paper presented at the 147th Meeting Electrochemical Society, Toronto, Canada,

May 15, 1975.

2. R.E. Martin and M.A. Manzo, "Alkaline Fuel Cell Performance Investigation." NASA TM-100937,

1988.

3. R.E. Martin, J. Garow, and K.B. Michaels, "Regenerative Fuel Cell Energy Storage System for a Low

Earth Orbit Space Station. Topical Report." NASA-CR-174802, 1984.

4. W.L. Fielder and J. Singer, "0 2 Reduction at the IFC Orbiter Fuel Cell 0 2 Electrode." NASA

TM-102580, 1990.

5. J. Giner and S. Smith, "A Simple Method for Measuring Polarization of Hydrophobic Gas Diffusion

Electrodes." Electrochemical Technology, Vol. 5, No. 1-2, Jan-Feb. 1967, pp. 59-61.

6. E. Gileadi, E. Kirowa-Eisner, and J. Penciner, "Interracial Electrochemistry. An Experimental

Approach." Reading, MA: Addison Wesley, 1975 p. 74.

7. R.W. Zurilla, R.K. Sen, and E. Yeager, "The Kinetics of the Oxygen Reduction Reaction on Gold in
Alkaline Solution." Journal of the Electrochemical Society, Vol. 125, No. 7, July 1978, pp. 1103-1109.

. A. Damjanovic, M.A. Genshaw, and J.O'M. Bockris, "Hydrogen Peroxide Formation in Oxygen
Reduction at Gold Electrodes. II. Alkaline Solution." Journal of Electroanalytical Chemistry and

Interracial Electrochemistry, Vol. 15, 1967, pp. 173-180.

, R.R. Adzic, N.M. Markovic, and V.B. Vesovic, "Structural Effects in Electrocatalysis. Oxygen

Reduction on the Au(100) Single Crystal Electrode." Journal of Electroanalytical Chemistry and

Interracial Electrochemistry, Vol. 165, 1984, pp. 105-120.

10. N.M. Markovic, R.R. Adzic, and V.B. Vesovic, "Structural Effects in Electrocatalysis. Oxygen

Reduction on the Gold Single Crystal Electrodes with (110) and (111) Orientations." Journal of

Electroanalytical Chemistry and Interracial Electrochemistry, Vol. 165, 1984, pp. 121-133.

11. R.R. Adzic, S. Strbac, and N. Anastasijevic, "Electrocatalysis of Oxygen on Single Crystal Gold
Electrodes." Materials Chemistry and Physics, Vol. 22, No. 3-4, 1989, pp. 349-375.

12. C. Paliteiro, A. Hamnett, and J.B. Goodenough, 'The Electroreduction of Dioxygen on Thin Films of
Gold in Alkaline Solution." Journal of Electroanalytical Chemistry and Interracial Electrochemistry,

Vol. 234, 1987, pp. 193-211.

13. A. Damjanovic, M.A. Genshaw, and J.O'M. Bockris, "The Mechanism of Oxygen Reduction at

Platinum in Alkaline Solutions with Special Reference to H202." Journal of the Electrochemical

Society, Vol. 114, No. 11, Nov. 1967, pp. 1107-1112.

14. J. Giner and C. Hunter, "The Mechanism of Operation of the Teflon-Bonded Gas Diffusion Electrode:
A Mathematical Model." Journal of the Electrochemical Society, Vol. 116, No. 8, Aug. 1969, pp.

1124-1130.

7



TABLE L--SLOPES AND INTERCEPTS IN THE

0.04 V/DECADE REGION FOR THE

IFC MODIFIED O. ELECTRODE

Sample Temperature, Slope, Intercept,

°C V/Decade V

C

C

A

B

B

B

B

A

A

A

B

C

A

B
C

B

A

C

B

A

C

A

B

C
A

B

23.3

23,9

24.0

24,0

24.0

26.6

26.9

28,1

30.8

33.3

34.7

35.3

44.4

46.1
46.9

54.4

55.0

55.3

65.6

66.1

66.4
77.2

77.8
78.3

90.3

91.7

0.0397

.0379

.0396

.0393

.0395

.0400

.0395

.0394

.0390

.0388

.0395

.0411

.0446

.0436

.0433

.0440

.0472

.0449

.0435

.0475

.0453

.0488

.0471

.0466

.0486

.0498

0.3652

.3498

.3622

.3630

.3608

.3727

.3529

.3457

.3433

.3402

.3487

.3462

.3653

.3428

.3419

.3342

.3610

.3427

.3272

,3503

,3334

.3422

.3260

.3331

.3106

.3516



TABLE II.--EXCHANGE CURRENTDENSITIESIN THE

0.04V/DECADE REGION FORTHE IFC

MODIFIED 02ELECTRODE

Temperature,
°C

23.3

23.9

24.0

24.0

24.0

26.6

26.9

28.1

30.8

33.3

34.7

35.3

44.4

46.1

46.9

54.4

55.0
55.3

65.6

66.1

66.4

77.2

77.8

78.3

90.3
91.7

Reciprocal

temperature,
(K) "1

0.003375

.003368

.003367

.003367

.003367

.003338

.003334

.003321

log Geometric exchange

current density,

A/cm 2

.003292

.003265

.003250

.003244

.003151

.003134

.003126

.003054

.003049

.003046

.002953

.002949

.002946

.002856

.002851

.002847

.002753

.002742

-9.199

-9.230

-9.146

-9.237

-9.134

-9.318

-8.936

-8.775

-8.801

-8.767

-8.827

-8.424

-8.190

-7.863

-7.896

-7.596

-7.648

-7.633

-7.521

-7.375

-7.492

-7.012

-6.921

-7.148

-6.391

-7.060

Geometric

exchange

current density,
A/cm 2

6.32x10 "1°

5.89

7.14

5.80

7.34

4.81
1.16x10 "9

1.68

1.58

1.71

1.49

3.77

6.45
1.37x10 "8

1.27

2.54

2.25

2.33

3.01

4.22

3.22

9.72

1.20xlO"7

7.11xlO"8

4.06xI0"7

8.70xi0"s
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